L’idea di funzione #2

di Antonio Sparzani

funzioni2

Ed eccoci – dopo quanto visto qui  – all’ultimo passo del cammino che porta a una definizione di funzione che finalmente ci soddisferà.

D. Quarto passo. Già nel XVIII, e poi più decisamente nel XIX secolo comincia ad affermarsi la tendenza a generalizzare la definizione di funzione, svincolandola dall’esigenza di una sua rappresentazione analitica, cioè dalla necessità – formale – di rappresentarla con una formula; la prima vera formulazione di questo tipo è dovuta a Eulero1 e suona così:

«Se alcune quantità dipendono da altre quantità in modo tale che se queste ultime vengono cambiate allora le prime anche cambiano, allora queste sono dette funzioni delle seconde. Questa denominazione è della più ampia natura e comprende ogni metodo per mezzo del quale una quantità può esser determinata da altre. Se perciò x denota una quantità variabile allora tutte le quantità che dipendono dalla x in un qualsiasi modo, o sono da questa determinate, sono dette funzioni di x.

Quest’idea non fu immediatamente condivisa dai matematici europei, ma dopo qualche decennio cominciò ad affermarsi definitivamente, nelle opere di Lagrange, Lacroix, Fourier e – infine – di Lobačevskij e Dirichlet.

Questi schematici accenni dovrebbero suggerire che l’idea che sta alla base del concetto di funzione è quella di dipendenza di una grandezza da un’altra, o da varie altre. Notate però che la parola ‘dipendenza’ può alludere a due situazioni differenti: la prima – connotativa – ad un modo causale formalmente esprimibile nel quale una grandezza y è determinata da un’altra grandezza x , esempio: la direzione di marcia di un’auto dipende strettamente dai movimenti dello sterzo; la seconda – denotativa – e dunque più astratta e casuale – esempio: se associate ad ogni intervallo di un minuto della notte dal 10 all’11 agosto 2014 il numero di stelle cadenti visibile a occhio nudo in un fissato quadrante del cielo boreale, è chiaro che ottenete una funzione perfettamente definita e determinata, ma è molto meno chiaro come si possa in qualche modo risalire dal valore della variabile indipendente (il generico intervallo di un minuto) a quello della funzione (il numero di stelle cadenti apparse in quel minuto), l’unico modo è quello di una accurata osservazione. È chiaro che in questo caso la funzione è data in modo squisitamente estensivo: si osserva – e si trascrive poi eventualmente in un grafico – il valore corrispondente ad ogni minuto; mentre nell’esempio dello sterzo c’è sicuramente modo di calcolare – e quindi anticipare – la direzione di marcia in termini dell’angolo di rotazione dello sterzo.

Allora la funzione c’è quando una cosa dipende da un’altra: al variare di questa varia quella, in un qualche modo che può essere il più vario possibile. Si tratta di metter tutto questo in una forma razionalmente corretta e comprensibile. Per farlo occorre che nella definizione sia contenuta da un lato la presenza di una quantità che può variare (e che sarà detta variabile indipendente) all’interno di un certo ben precisato ambito di possibilità – e che è detto dominio della funzione – e dall’altro la descrizione di un ambito, in generale diverso dal primo – detto codominio, o anche range, della funzione – in cui può variare la quantità (detta variabile dipendente) che dipende dalla prima; oltre a ciò occorre che sia esattamente precisata questa dipendenza. Come s’è detto questa “precisazione” può essere formale – analitica, cioè esprimibile con formule – o invece fornita dall’osservazione dei fatti. Nell’idea di funzione c’è dunque qualcosa di profondamente non simmetrico, c’è una grandezza che varia arbitrariamente all’interno di un certo ambito e ce n’è poi un’altra che varia al variare della prima. Questa non simmetria si evidenzia anche da questa caratteristica di ogni funzione, che viene detta la sua univocità: dato un valore della variabile indipendente, dunque appartenente al suo dominio, uno e un solo valore della variabile dipendente gli corrisponde. Per ogni valore dell’età di Alice è univocamente determinata la sua altezza: ad una determinata età Alice non può avere due altezze diverse. Ma se invece fissate un valore dell’altezza (dunque del codominio della funzione che stiamo considerando) esisteranno certamente molti valori dell’età di Alice cui quel valore corrisponde: Alice non continua a crescere per tutta la sua vita, né a decrescere.

Un modo standard usato dai matematici pignoli per scrivere tutto questo è questo:

funzione notazione

 

Dove D indica il dominio della funzione f , W indica il codominio, x il generico elemento di D e le freccette alludono in qualche modo alla asimmetria della situazione.

  1. Leonhard Euler (Basilea 1707 – San Pietroburgo 1783), grande matematico e fisico svizzero; fu allievo di Johann Bernoulli, e succedette nel 1733 al figlio di questi, Daniel, sulla cattedra di matematica dell’Accademia di San Pietroburgo. Scrisse la definizione qui riportata nella prefazione delle sue Institutiones calculi differentialis, pubblicate nel 1755. []

1 commento

I commenti a questo post sono chiusi

articoli correlati

Il silenzio è cosa viva

di Giorgio Morale La prosa dei poeti: Il libro Il silenzio è cosa viva di Chandra Livia Candiani (Einaudi 2018,...

Cosa ne dirà la gente? Festa di Nazione Indiana 2018

Vi aspettiamo alla Festa di NazioneIndiana 2018! Quest'anno si terrà sabato 27 ottobre dalle 16.30 e domenica 28 ottobre dalle 10 alle 12 ed è stata organizzata in collaborazione con l'Associazione C.A.R.M.E.

Sistema #1

di Antonio Sparzani Sistema, che straordinaria parola nella lingua italiana e nelle altre lingue vicine alla nostra: la sua etimologia...

[1938-1940] ILIO BARONTINI “vice-imperatore” dell’Abissinia

di Orsola Puecher

In questo 25 aprile 2018, che ancora pervicacemente mi sento in dovere di “commemorare” contro il rigurgito di tutti i fascismi e razzismi, manifesti o striscianti che siano, nel raccontare l’avventurosa e straordinaria missione di sostegno alla resistenza etiope compiuta dal 1938 al 1940 da Ilio Barontini...

una rete di storie CALUMET VOLTAIRE cabaret letterario


Cose mai viste (le riviste)
di Francesco Forlani
Ci saranno performance, musica improvvisata, reading, convivialità, conversations, preferendo questo termine, civile, a quello di dibattito generalmente stantio come l’acqua nelle caraffe posate sul tavolo dei relatori. Le feste di Nazione Indiana sono state e saranno questo. A Fano faremo come a Milano, Mesagne, Pistoia, Torino, Parigi, Fos’di Novo, Bolzano, dunque non mancate.

una rete di storie festa di Nazione Indiana 2017

Nella sua storia lunga ormai ben 14 anni Nazione Indiana ha pubblicato più di 10.000 articoli di critica,...
antonio sparzani
Antonio Sparzani, vicentino di nascita, nato durante la guerra, dopo un ottimo liceo classico, una laurea in fisica a Pavia e successivo diploma di perfezionamento in fisica teorica, ha insegnato fisica per decenni all’Università di Milano. Negli ultimi anni il suo corso si chiamava Fondamenti della fisica e gli piaceva molto propinarlo agli studenti. Convintosi definitivamente che i saperi dell’uomo non vadano divisi, cerca da anni di riunire alcuni dei numerosi pezzetti nei quali tali saperi sono stati negli ultimi secoli orribilmente divisi. Soprattutto fisica e letteratura. Con questo fine in testa ha scritto Relatività, quante storie – un percorso scientifico-letterario tra relativo e assoluto (Bollati Boringhieri 2003) e ha poi curato, raggiunta l’età della pensione, con Giuliano Boccali, il volume Le virtù dell’inerzia (Bollati Boringhieri 2006). Ha curato due volumi del fisico Wolfgang Pauli, sempre per Bollati Boringhieri e ha poi tradotto e curato un saggio di Paul K. Feyerabend, Contro l’autonomia (Mimesis 2012). Ha quindi curato il voluminoso carteggio tra Wolfgang Pauli e Carl Gustav Jung (Moretti & Vitali 2016). È anche redattore del blog La poesia e lo spirito. Scrive poesie e raccontini quando non ne può fare a meno.